118 research outputs found

    Adding DL-Lite TBoxes to Proper Knowledge Bases

    Get PDF
    Levesque’s proper knowledge bases (proper KBs) correspond to infinite sets of ground positive and negative facts, with the notable property that for FOL formulas in a certain normal form, which includes conjunctive queries and positive queries possibly extended with a controlled form of negation, entailment reduces to formula evaluation. However proper KBs represent extensional knowledge only. In description logic terms, they correspond to ABoxes. In this paper, we augment them with DL-Lite TBoxes, expressing intensional knowledge (i.e., the ontology of the domain). DL-Lite has the notable property that conjunctive query answering over TBoxes and standard description logic ABoxes is re- ducible to formula evaluation over the ABox only. Here, we investigate whether such a property extends to ABoxes consisting of proper KBs. Specifically, we consider two DL-Lite variants: DL-Literdfs , roughly corresponding to RDFS, and DL-Lite_core , roughly corresponding to OWL 2 QL. We show that when a DL- Lite_rdfs TBox is coupled with a proper KB, the TBox can be compiled away, reducing query answering to evaluation on the proper KB alone. But this reduction is no longer possible when we associate proper KBs with DL-Lite_core TBoxes. Indeed, we show that in the latter case, query answering even for conjunctive queries becomes coNP-hard in data complexity

    Cognitive Robotics

    Get PDF
    This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cognitive robotics, as we understand it to have been envisaged by him.1 Of course, nobody can control the use of a term or the direction of research. We apologize in advance to those who feel that other approaches to cognitive robotics and related problems are inadequately represented here

    On the progression of situation calculus basic action theories: Resolving a 10-year-old conjecture

    Get PDF
    In a seminal paper, Lin and Reiter introduced a modeltheoretic definition for the progression of the initial knowledge base of a basic action theory. This definition comes with a strong negative result, namely that for certain kinds of action theories, first-order logic is not expressive enough to correctly characterize this form of progression, and secondorder axioms are necessary. However, Lin and Reiter also considered an alternative definition for progression which is always first-order definable. They conjectured that this alternative definition is incorrect in the sense that the progressed theory is too weak and may sometimes lose information. This conjecture, and the status of first-order definable progression, has remained open since then. In this paper we present two significant results about this alternative definition of progression. First, we prove the Lin and Reiter conjecture by presenting a case where the progressed theory indeed does lose information. Second, we prove that the alternative definition is nonetheless correct for reasoning about a large class of sentences, including some that quantify over situations. In this case the alternative definition is a preferred option due to its simplicity and the fact that it is always first-order

    Knowledge, action, and the frame problem

    Get PDF
    AbstractThis paper proposes a method for handling the frame problem for knowledge-producing actions. An example of a knowledge-producing action is a sensing operation performed by a robot to determine whether or not there is an object of a particular shape within its grasp. The work is an extension of Reiter's approach to the frame problem for ordinary actions and Moore's work on knowledge and action. The properties of our specification are that knowledge-producing actions do not affect fluents other than the knowledge fluent, and actions that are not knowledge-producing only affect the knowledge fluent as appropriate. In addition, memory emerges as a side-effect: if something is known in a certain situation, it remains known at successor situations, unless something relevant has changed. Also, it will be shown that a form of regression examined by Reiter for reducing reasoning about future situations to reasoning about the initial situation now also applies to knowledge-producing actions

    10081 Abstracts Collection -- Cognitive Robotics

    Get PDF
    From 21.02. to 26.02.2010, the Dagstuhl Seminar 10081 ``Cognitive Robotics \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Knowledge Equivalence in Combined Action Theories

    Get PDF
    We investigate the relationship between two accounts of knowledge and action in the situation calculus: the Scherl and Levesque (SL) approach that models knowledge with possible worlds, and the Demolombe and Pozos Parra (DP) approach that models knowledge by a set of “knowledge fluents. ” We construct combined action theories: basic action theories that encode a correspondence between an SL and a DP theory. We prove, subject to certain restrictions, that knowledge of fluent literals are provably the same after a sequence of actions. Moreover, this knowledge equivalence extends to a rich class of formulae. These results allow us to translate certain SL theories into equivalent DP theories that avoid the computational drawbacks of possible world reasoning. They also enable us to prove the correctness of the DP treatment of knowledge and action in terms of a possible world specification.
    corecore